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A plastic flow-induced fracture theory for 
fatigue crack growth 
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A plastic flow-induced fracture theory for fatigue crack growth is presented. A new formulae 
for the fatigue stress intensity threshold and the fatigue crack growth rate law are derived by 
applying the principle of energy conservation in considering the fatigue crack growth process 
in the presence of local plastic f low ahead of the crack-tip. The present theory predicts not 
only the fatigue crack growth rate being just proportional to the rate of creation of dislocation 
at the crack-tip, but also the fatigue stress intensity threshold, which can be determined 
according to the applied fatigue stress amplitude and the characteristic size of microstructural 
fracture process ahead of the crack-tip, and can account for the fatigue crack growth 
characteristics at both low and high levels of applied fatigue stress intensity amplitude. All the 
results are universal and agree with the existing empirical results and experimental 
observations. 

1. Introduction 
It has been recognized that the behaviour of material 
near the crack-tip will ultimately form the basis for all 
fracture theories. In order to build up a fatigue frac- 
ture theory which describes the cyclic plastic deforma- 
tion based on the behaviour of dislocations near the 
crack-tip, much work has been done [1-13]; however, 
dislocation-enhanced fatigue crack growth (FCG) has 
not been analysed by applying rigorous energetic con- 
siderations, and it is the purpose of the present paper 
to present a simple model that allows such a calcu- 
lation to be made of the effects of the plastic flow on 
the growth dynamics of a fatigue crack by applying 
the principle of energy conservation. The main con- 
clusion derived from the present study includes a new 
expression for threshold stress intensity range and 
a new formula for the FCG rate. 

2. The present theory 
The two-dimensional plane strain model shown in 
Fig. 1 is proposed to explain plastic flow-enhanced 
FCG. Here we use a giant or super dislocation, nb, to 
simulate the localized cyclic plasticity around the 
fatigue crack-tip. The physical meanings can be ex- 
plained as n dislocations generated by one cycle stress 
at x = d* ahead of the crack-tip, interacting with the 
crack which results in growth of the crack. In our 
consideration, all of the microplasticity seems to be 
concentrated in the slip-bands, reversed dislocation 
motion precedes local fracture and lowers the cohesive 
energy of the slip planes, effectively lowering local 
stress ~f, until local cleavage fracture occurs; or in 
other words, only if the localized plastic flow reaches 

a critical state does the secondary crack initiate in 
front of the crack-tip and the main crack propagate 
[6]. The characteristic length, d*, reflects the sensitive 
degree of materials microproperties to applied loads 
as well as test environments and cyclic frequencies, 
and is a very important geometric parameter which 
can be determined by the microstructure of the mater- 
ials. It is a typical fracture in which the secondary 
cracks nucleate, grow and coalesce with the main 
crack due to dislocation pile-ups caused by local plas- 
tic flow against the microstructure defects within the 
region ahead of the crack-tip [6]. In this paper the 
FCG dynamics is discussed quantitatively. 

According to the well known theory of fracture 
mechanics, when the applied stress intensity range, 
AK _--K .... -Kmln,  exceeds the threshold value, 
AKth, i.e. AK > AKth, then the fatigue crack grows in 
a steady stage. However, in physics, the total energy of 
the crack system sketched in Fig. 1 is always kept at 
conservation. With this consideration we generally 
have [14] 

d 
dN(T + U) = 0 (1) 

where T and U are the kinetic energy and static 
energy of the fatigue crack system, respectively. 

According to dislocation theory [15], the static 
energy for the fatigue crack system sketched in Fig. 1 is 

, f+;d  ; g = 4a tca  -- ~ Acsb A f ( x ' ) d x '  (2) 
X 

where the first term represents effective surface energy 
of the crack of size 2a and the second term is the 
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Figure 1 The dislocation model of fatigue crack growth in the 
presence of local plastic flow ahead of the crack-tip. 

mechanical energy of the crack dislocation systems. 
Here G~c is the fatigue crack extension force, Aey is the 
applied cyclic stress amplitude and Af(x) is the 
dislocation'densities of the crack body which can be 
calculated from 

f +~ AAf(x ' )dx '  An 
- ,  x - x '  -t a + d * - x + A e ~ = 0  (3) 

For  I x I ~< a, the Cauchy principal value of the singular 
integral is understood; where A = txb/2rffl - v); Ix is 
the shear modulus and v is Poisson's ratio. 

It should be pointed out here that, in using this 
approach, we have made two assumptions: (1) by 
using the superdislocation approach, we have elimi- 
nated dislocation-dislocation interactions, a simplify- 
ing approximation; (2) no friction force has been 
included as a back-stress on dislocation motion which 
can have a substantial effect in strain rate sensitive 
materials at high loading frequencies. With these two 
simplifying assumptions, the exact solution of the sin- 
gular integral in Equation 3 is [16] 

- 1 ['+~ (a 2 - -  X'2) 1/2 

Af(x) = ~z2A(a i 7_ x2)lla d , 2 ---7 

x a +  d* - x' + Acy dx' + (a 2 _ x2)1/2 (4) 

where K is a constant that has to be determined from 
the physical condition that 

f +a Af(x) = (5) dx 0 
- - a  

When K is calculated and its value substituted into 
Equation 4, the dislocation distribution function 
Af(x) becomes 

Act x n 
Af(x) - 7tA (a 2 - -  x2) 1/2 rc(a 2 - x2) 1/2 

n ((a + d*) 2 -- a2) 1/2 

4 7r(a 2 _ x2)1/2 (a + d* - x) (6) 

It may be proven easily from Equation 7 that the 
fatigue crack begins to propagate with rapid speed 
when 

f 2rffl -- v2)Ae~a nb = (r/b)critica I '~ 

EGIc E 
a = a~ - n(1 - vz )Ary  2 

(8) 

It is also not difficult to find the kinetic energy of 
a fatigue crack as [17] 

kpoa2d2o)2Acy41(,n+ i) 
T = 2E2ey~/(m+ l) (9) 

where E is Young's modulus, Po is metal density, eYA is 
strength coefficient of metal, m is hardening exponent, 
k -~ 5.45, co is the cyclic frequency and d = da /dN is 
the rate of FCG. 

Inserting Equations 7 and 9 into Equation 1, we 
obtain the dynamic equation of plastic flow enhanced 
FCG under the action of constant cyclic stress ampli- 
tude as follows 

E2~2/(m + 1) { 
a2a'd So- aa 3 + kpomZAcy4/(m+l ) 4Gic 

2re(1 - v 2 ) .  2 
aey a -- ke~nb 

E 

• ' (  "* 
- 4 \ ~ )  JJ• 

E2(y21(m+ 1) 

k poo)2Aer +,n) 

d* 1 d*Ni/z~ d(nb) 0 
x a + T - 4 [ d * ( 2 a +  ,j  J aN = 

( l o )  

where/i = dfi /dN is the growth rate of acceleration for 
a fatigue crack; d(nb)/dN is the number of dislocations 
generated per cycle from the crack-tip. In obtaining 
Equation 10, we have used the condition that rate of 
change of cyclic stress amplitude per cycle is 
dAcUdN = 0. 

Since Equation 10 is a non-linear equation, gener- 
ally speaking, it is very difficult to get a simple expres- 
sion of d from it. But, for small d and a < ac, i.e. 
for slow growth stage of crack, /i and d 3 may be 
negligible, then substituting Equation 8 into Equation 10 
gives 

da Aey{a + d*/2 - 1/4[d*(2a + d*)] l/a} d(nb) 

d g  4Gic - [2~(1 - v2)/E] Aey2a - Acynb{1 - 1/4[d*/(2a + d*)] 1/2} dX 
(11) 

Inserting Equation 6 into Equation 2 gives 

U = 4Gica ~(1 - v2)_ 2 2 zxey a -- Aeynb 
E ( , ,1  ) x a + ~ - - -  ~ [d*(2a + d*)]1/2 

4 1 0 0  

(7) 

This is a rate expression of crack-tip cyclic plastic flow 
enhanced FCG. Of special interest in this expression is 
that it predicts the FCG rate being just proportional 
to the rate of creation of dislocation at the crack-tip. It 
is also evident that at this stage that the growth rate of 
the fatigue crack is closely related to d (nb)/dN > 0, i.e. 



to the number of dislocations generated at the crack- 
tip. If d(nb)/dN = 0, then da/dN = 0, and no F CG  
occurs. 

3. Results and discussion 
In order to further find a formulation for da/dN in 
Equation t l ,  the following approximation is used to 
calculate d(nb)/dN and (nb). Let no be the average 
number of mobile dislocation sources per unit volume 
around the crack-tip, and L the average length of slip 
plane. The plastic strain in one cycle can then be 
expressed as [14] 

d(nb) 
n~ dN - Aap (12) 

For  metal fatigue there is a universal empirical for- 
mula [18] 

Agp = 8f (A~ 1/13 (13) 

\O ' f J  

where 13 is the cyclic strain hardening exponent and 
0.10 < ]3 < 0.20 for all metallurgical materials [18]; 
both c~f and 8f are the real fracture stress and the real 
fracture strain in monotonic loading, respectively. 
From Equations 12 and 13 we have 

d(nb) _ Ef {~x~ 1/13 
(14) 

dN noL 2 ~1\ cyf / 

With the fatigue crack approach to propagation, Rela- 
tion 8 between (nb) and a is approximate. Further- 
more, with a view to reveal the nature of FCG process 
and form a concise expression of FCG rate, we con- 
sider here a simple mathematical transformation 

d* 1 a + ~-  -- ~ (d*(2a + d*) )  1/2 ~'~ ( a  1/2 - Yd*1/2)2(15) 

here Y is a numerical constant factor and numerically 

Y ~- 0.18 ~ 0.70 (16) 

The former (Y = 0.18) corresponds to d* ~ a, and the 
latter (Y = 0.70) corresponds to d* ~ (2a)/3. Clearly, 
Y has obvious physical meanings which also reflect 
the sensitive degree of material's microproperties to 
applied cyclic loads as well as test environments and 
cyclic frequencies. 

Substituting Equations 8, 14 and 15 into Equation 
11 gives 

da EEfA(7[(1/13) 11 (AK - -  A K t h )  2 

d N -  2n(1 - v2)noL 2 ~fl/~ x (K2c _ AK2) (17) 

where we have defined 

AK = A~ (~a) 1/2 (18a) 

and 

AKth = YA(~(rcd*) I/2 (18b) 

as crack-tip stress intensity range and threshold stress 
intensity range, respectively. 

Equations 17 and 18b are the new rate formula of 
plastic flow enhanced FCG and the new expression for 
threshold stress intensity range derived by applying 

the principle of energy conservation in considering the 
F CG  process. 

Of most importance and interest in Equation 17 is 
that it can account for the crack growth characteristics 
at both low and high levels of AK. For  low values of 
AK, i.e. Kic ~> AK, Equation 17 can be approximately 
written as 

da EcfAcr[(1/~)- 1] 
dN - 2re(1 - v2)noL2c~/~K~c (AK - AK,h) 2 (17a) 

Such a rate expression of FCG agrees completely with 
the empirical relation suggested by Donahue et al. 
[19] and agrees with the Paris empirical formula, if 
only from the point of view of da/dN ~ (AK) 2. So, our 
new expression of FCG rate law (Equation 17) can be 
used to account for the experimental data at low stress 
levels and the existence of a threshold value AKth of 
AK at which no crack propagation occurs, since if 
AK ~ AKth, then da/dN ~ O. 

At high AK values, i.e. AK >> AKth , we can write 
Equation 17 as 

da E g f  A(~[(1/13) - -  1 ]  A K  2 

d N -  2~(1 - v 2 ) n o L 2 c r f  1/fl (K2c  - -  A K  2) (17b) 

It is evident that Equation 17b agrees with Forman 
et aI. [20] empirical formula only from the point of 
view of da/dN ~ AK2/(K~c-  AK2). It should be 
pointed out, however, although at first sight it seems 
that da /dN-*  o~ as AK--. Kic, from Equation 17, 
this is not so, because the result calculated from Equa- 
tion 10 told us that it is only suitable for a small 
growth rate and not for a high propagation rate like 
AK ~ K~c. As a matter of fact, as AK ~ K~c, or a ~ ac, 
the crack length approaches critical size, ac and its 
growth rate will increase abruptly. Substituting Equa- 
tion 8 into Equation 10, and ignoring/i, we get the 
growth rate at the critical point (for m = 1) 

a--~ac,d--~dmax [_ 2kc0213o ] (19) 

which is close to the speed of the stress wave propagat- 
ing in metal (E/po) ~/2, and at this time fracture occurs. 
This is, in general, the so-called true physical meaning 
of/~ --, oo. 

It should be emphasized that Equation 18b is fun- 
damentally interesting. This is a new definition of 
threshold stress intensity range that has not been 
found in the literature. The concept of the fatigue 
stress intensity threshold has developed over the last 
20 years into a useful parameter for the charac- 
terization of materials. However, there are still many 
difficulties involved in the determination of this 
parameter. Here we emphasise that, according to 
Equation 18b, AKth can be dealt with as a material 
parameter. As a matter of fact, AKth can generally be 
determined by rigorous calculation as follows. 

To calculate the crack-tip stress intensity range in 
the existence of local cyclic plastic flow at a micro- 
scopic level, we have the formula [21] 

AKtip = 7~(2r01/2 A lim (a - x)  1/2 Af(x) (20) 
x - - * a  

4101 



where A and Af(x) are as before. Inserting Equation 
6 into Equation 20 it is very easy to get 

AKtip = 

gnb 
A~ + 2(1--v-~rca)l/2 I ( 1  + )-*]2a~1/2 - 11 (21) 

Equation 21 is the crack-tip stress intensity range. It is 
clear that A K  tip consists of two parts: the applied 
stress intensity (the first term on the right side of 
Equation 21) and the contribution of local cyclic plas- 
tic flow (the second term on the right side of Equation 
21). 

When n = 0, Equation 21 reduces to the well known 
definition of applied stress intensity range. From this 
it can be seen that it includes all the information of 
applied loading and microstructure conditions. In 
fracture mechanics o n c e  A K  tip = KIC , then the crack 
begins to propagate. Accordingly 

E(nb)critica, 2a~'/2 _ 1] 
a K t h = K , c  4 ~ ( ] - = v 2 ~ ) l / z [ ( l + d . ]  

(22) 

here (nb)critir physically means critical cyclic plastic 
flow for the secondary microcrack nucleation and 
propagation ahead of the crack-tip. Remembering 
Equation 10 and taking the approximate calculation 
[1 +(2a/d*)]~/2-1 ~-(2a/d*) 1/2, it is easy, from 
Equation 22, to find 

A g t h = ~ -  1 -  1 ~ Y (23) 

In obtaining Equation 23 we have used the definition 

AKth = YAc~(rcd*) 1/2 

i.e. Equation 18b. Clearly, AKth can be dealt with 
a material constant for any given Y and Kio  and, 
numerically 

AKth = 0.085KIc ~ 0.392Km (24) 

which just corresponds to 

Y = 0.18 ~ 0.70 

i.e. Equation 16. 
To summarize, it is evident from the above dis- 

cussion that the characteristic size, d*, plays a critical 
role in determining the threshold stress range and the 
FCG rate. In the present approach we have 
considered d* to be a material parameter under one 
given loading condition, and it can be further 
understood as the characteristic size of the 
microstructural fracture process [22]. The location for 
x = d* is always at a site where the local tensile stress 
amplitude is at a maximum. It is thought that the 
macro incontinuity at sites near the location of the 
local tensile stress maximum solely nucleates the 
microcrack, and the more cyclic plastic flow 
accumulation results in secondary crack initiation. 
With the propagation of the secondary crack, and 
coalescence with the main crack, the main crack 
advance finally occurs. Experimental evidence 
support us in making Such a consideration - the basic 
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fact is the occurrence of microscopic damage ahead of 
the growing crack [6]. When the stress intensity range 
is large, the plastic zone at the crack-tip will also be 
large, and it is to be expected that microcracks will 
form ahead of the main crack. These will occur at 
grain boundaries, or other obstacles slip, particularly 
at brittle precipitates, just as in the case of fracture 
under monotonic loading. 

In order to have a quantitative knowledge of the 
present discussion, the FCG rate is calculated from 
Equation 17 for mild steel as shown in Fig. 2. For  the 
calculation, respective parameters are assumed as 
follows: E, 2 x l 0 ~ k g m m - 2 ;  [3, 0.13; v, 0.25; no, 
5 • 106 mm 3; L, 10 - 2  ram; cyf, 80 kgmm 2; el, 1.04; 
Acy, 20 kgmm -2, Kin, 2.50 x 102kgmm-3/2; and also 
AKth = 0.1K~c follows from Equation 23. 

It is obvious from Fig. 2 that the theoretical curve of 
the FCG rate agrees completely with the typical form 
of the FCG rate curve that has been found experi- 
mentally. Similarly, three regions, according to the 
curve shape in Fig. 2 can be distinguished. In region I, 
da/dN diminishes rapidly to a vanishingly small level 
and there is a threshold value of the stress intensity 
range amplitude AKth meaning that for AK < AKth no 
crack growth takes place. In region II there is a deter- 
ministic semi-logarithmic A K -  ln(da/dN) relation- 
ship. Finally, in region III the FCG rate curve rises 
and the maximum stress intensity, K . . . .  in the 
fatigue load cycle becomes equal to the critical stress 
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Figure 2 The theoretical curve of fatigue crack growth rate for mild 
steel according to Equation 17 (1 kg mm -3/2 = 0.3162 MPaml/2; 
1 MPa m 1/2 = 0.91 ksi x/in). 



intensity, Kic, leading to catastrophic failure. All the 
results are well known experimental facts for FCG 
[23]. 

4. Conclusions 
In conclusion, a new theory has been proposed and 
developed for fatigue fracture based on FCG due to 
plastic flow on a localized scale within the crack-tip 
plastic zone. A new formulae for threshold stress 
intensity range and FCG rate law are derived by 
applying the principle of energy conservation in con- 
sidering the FCG process in the presence of local 
plastic flow ahead of the crack-tip. The present theory 
predicts not only the fatigue crack growth rate being 
proportional to the rate of creation of dislocation at 
the crack-tip, but also the fatigue stress intensity thre- 
shold which can be determined according to the ap- 
plied fatigue stress amplitude and the characteristic 
size of microstructural fracture process ahead of the 
crack-tip; and can account for the fatigue crack 
growth characteristics at both low and high levels 
of applied fatigue stress intensity amplitude. All the 
results are universal and agree with the existing em- 
pirical results and experimental facts. Although the 
new formulae for both fatigue stress intensity 
threshold and FCG rate law can explain experimental 
observations, additional theoretical studies are 
suggested to confirm the proposed fatigue fracture 
theory since it is of great theoretical and technological 
importance. 
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